Your feedback has been sent to our team.
—
—
3.70
Spring 2026
This one-semester undergraduate/graduate course will focus on the modern applications of X-ray diffraction techniques in crystal and molecular structure determination. The class will also include powder diffraction and its application in X-ray structure analysis.
—
—
3.46
Spring 2025
Covers physical methods for characterizing structure, composition, & surface chemistry of inorganic nanomaterials. Methods discussed include electron & probe microscopies, X-ray techniques, vibrational spectroscopies, & UV-visible spectroscopy. We will explore the use of these & other techniques across ex situ, in situ, & operando conditions for the determination of structure-function relationships & reaction mechanisms.
—
—
3.46
Fall 2025
Introduces the components of biological macromolecules and the principles behind their observed structures. Examines the means by which enzymes catalyze transformations of other molecules, emphasizing the chemical principles involved, and describes key metabolic cycles and pathways, the enzymes that catalyze these reactions, and the ways in which these pathways are regulated. Three class hours (Y) Prerequisites: One year of biochemistry; one year of organic chemistry; one semester of thermodyanmics.
—
—
3.64
Spring 2026
Covers three main areas: (1) the structure and function of biological membranes, (2) complex biochemical systems and processes, including photosynthesis, oxidative phosphorylation, vision, neurotransmission, hormonal regulation, muscle contraction and microtubules, and (3) molecular biology, including DNA metabolism, protein synthesis, regulation of gene expression and recombinant DNA methodology. Three class hours,. (Y) Prerequistes: CHEM 7430 or permission of instructor.
4.00
1.00
3.48
Spring 2026
Topics include principles of image formation; methods for sample preparation and chemical labeling; photophysics of fluorescent proteins and organic dyes; and computational image analysis and data processing.Recommended prerequisites: Calculus II or higher, Introduction to Biology. Required prerequisites: CHEM 1420, 1620 or 1810.
—
—
3.77
Fall 2025
Discusses the principles & commonly used techniques in chemical biology. The text will be used as a mechanism to introduce fundamental concepts through lecture and explored in further detail using the primary literature. The goal is to gain an appreciation for the detailed understanding of biological processes that can be afforded through chemical approaches. We will strive to eradicate the often irrational and unfounded fear of all things "bio".
—
—
3.73
Spring 2026
Provide science graduate students interested in an academic career with training in teaching at the postsecondary level. Specifically, the course is intended to introduce instructional practices that have been empirically demonstrated to enhance students' learning & attitudes toward science & their associated learning theories. To provide students with opportunity to develop teaching philosophy & implement, & receive feedback on a unit & lecture.
—
—
3.49
Spring 2026
An introduction to classic & modern approaches of chemical analysis of biological systems. Detection of analytes ranging from small molecules & proteins, to cells, to structured materials. Focus on immunoassays: ELISA, bead-based assays, & surface plasmon resonance for analytes in solution; ELISpot for cell secretions; flow cytometry for cells and beads; & immunostaining for biomaterials and tissue samples. Prerequisite: CHEM 4410
—
—
3.85
Fall 2025
Presents the analytical and physical science opportunities from the study of biosystems in engineered microsystems
—
—
—
Spring 2026
This course aims to provide an introduction to mass spectrometry (MS) theory, instrumentation with an emphasis on modern MS techniques including ionization methods, mass analyzers, and basic principles of mass spectral interpretation, students can expect to learn MS data analysis and evaluation. Live demonstrations, useful software, & tools will be used to help the students understand better how each component of a mass spectrometer works.
No course sections viewed yet.