Your feedback has been sent to our team.
—
—
4.00
Spring 2026
Student continues to build on their knowledge of the methods of research including the use of research literature and instruction in more advanced experimental and theoretical procedures and techniques. Students can conduct their research within the Dept of Chemistry or in a related science with approval. Under the supervision of faculty but may work closely with a Post-Doc or graduate student.
—
—
3.41
Spring 2026
A comprehensive survey of synthetic organic reactions and their application to the design and execution of syntheses of relatively complex organic substances.
—
—
3.49
Fall 2025
This course is designed to give you a quick review and understanding of traditional and modern synthetic reaction mechanisms and principles involving heterocyclic molecules. The course will primarily cover the synthesis and general reactivities of aromatic heterocyclic ring systems. Must have successfully completed Organic Chemistry II (CHEM 2420).
—
—
3.41
Spring 2026
Studies the theory and application of instrumental techniques in solving organic structural problems. Topics include ultraviolet and infrared absorption spectroscopy, nuclear magnetic resonance, mass spectrometry, rotatory dispersion, and circular dichroism.
—
—
3.46
Fall 2025
For students interested in the properties & phenomena of atomic, molecular, & nanoscale matter. The foundational ideas of quantum mechanics are introduced & tools for exact & approximate solutions of the Schrodinger Equation are developed. Model systems, such as particle in a box, harmonic oscillator, hydrogen atom, hydrogen ion & molecule, crystalline solids, as well as time-dependent phenomena, such as spectroscopy, tunneling, and scattering.
—
—
3.37
Spring 2026
This course provides an introduction to statistical mechanics for graduate students or highly advanced undergraduates. The course begins with a review of thermodynamics and an introduction to the fundamental assumptions of equilibrium statistical mechanics, continues on to examine both non-interacting and interacting systems of interest, and finally introduces the basic concepts of non-equilibrium statistical mechanics.
—
—
3.89
Spring 2026
Introduces the practice and theory of modern chemical kinetics, emphasizing reactions occurring in gases, liquids, and on catalytic surfaces. Develops basic principles of chemical kinetics and describes current experimental and analytic techniques. Discusses the microscopic reaction dynamics underlying the macroscopic kinetics in terms of reactive potential energy surfaces. Develops statistical theories of reactions that simplify the description of the overall reaction dynamics. Includes the transition state theory, Rice-Ramsperger-Kassel-Marcus (RRKM) theory for unimolecular reactions, Kramers' theory, Marcus electron transfer theory, and information theory. Presents current topics from the literature and illustrates applications of basic principles through problem-solving exercises. Prerequisite: Undergraduate physical chemistry or instructor permission.
—
—
—
Spring 2025
Theory and applications of magnetic resonance spectroscopy. Topics include theoretical principles of nuclear magnetic resonance (NMR) spectroscopy, practical aspects of experimental NMR, solution and solid-state NMR, overview of electron paramagnetic resonance (EPR) spectroscopy and dynamic nuclear polarization (DNP).
—
—
3.50
Fall 2025
This interdisciplinary course will introduce advanced undergraduates and graduates to molecules and their chemistry in different sources throughout the universe. Topics include gas-phase and grain-surface reactions, astronomical spectroscopy, laboratory experiments, and astrochemical modeling.
—
—
3.48
Spring 2026
Covers mathematical language which describes symmetry and focuses on its application to inorganic chemistry, determination of point groups, use of character tables, and construction of MO theory diagrams. This will be followed by application of these concepts to spectroscopic methods, e.g. Absorption, IR, Raman, NMR, magnetism, and EPR, etc. The material is intended to cover the theory and interpretation of standard spectroscopic techniques.
No course sections viewed yet.