Your feedback has been sent to our team.
—
—
3.41
Spring 2026
A comprehensive survey of synthetic organic reactions and their application to the design and execution of syntheses of relatively complex organic substances.
—
—
3.41
Spring 2026
Studies the theory and application of instrumental techniques in solving organic structural problems. Topics include ultraviolet and infrared absorption spectroscopy, nuclear magnetic resonance, mass spectrometry, rotatory dispersion, and circular dichroism.
—
—
3.37
Spring 2026
This course provides an introduction to statistical mechanics for graduate students or highly advanced undergraduates. The course begins with a review of thermodynamics and an introduction to the fundamental assumptions of equilibrium statistical mechanics, continues on to examine both non-interacting and interacting systems of interest, and finally introduces the basic concepts of non-equilibrium statistical mechanics.
—
—
3.89
Spring 2026
Introduces the practice and theory of modern chemical kinetics, emphasizing reactions occurring in gases, liquids, and on catalytic surfaces. Develops basic principles of chemical kinetics and describes current experimental and analytic techniques. Discusses the microscopic reaction dynamics underlying the macroscopic kinetics in terms of reactive potential energy surfaces. Develops statistical theories of reactions that simplify the description of the overall reaction dynamics. Includes the transition state theory, Rice-Ramsperger-Kassel-Marcus (RRKM) theory for unimolecular reactions, Kramers' theory, Marcus electron transfer theory, and information theory. Presents current topics from the literature and illustrates applications of basic principles through problem-solving exercises. Prerequisite: Undergraduate physical chemistry or instructor permission.
—
—
3.48
Spring 2026
Covers mathematical language which describes symmetry and focuses on its application to inorganic chemistry, determination of point groups, use of character tables, and construction of MO theory diagrams. This will be followed by application of these concepts to spectroscopic methods, e.g. Absorption, IR, Raman, NMR, magnetism, and EPR, etc. The material is intended to cover the theory and interpretation of standard spectroscopic techniques.
—
—
3.70
Spring 2026
This one-semester undergraduate/graduate course will focus on the modern applications of X-ray diffraction techniques in crystal and molecular structure determination. The class will also include powder diffraction and its application in X-ray structure analysis.
—
—
3.64
Spring 2026
Covers three main areas: (1) the structure and function of biological membranes, (2) complex biochemical systems and processes, including photosynthesis, oxidative phosphorylation, vision, neurotransmission, hormonal regulation, muscle contraction and microtubules, and (3) molecular biology, including DNA metabolism, protein synthesis, regulation of gene expression and recombinant DNA methodology. Three class hours,. (Y) Prerequistes: CHEM 7430 or permission of instructor.
4.00
1.00
3.48
Spring 2026
Topics include principles of image formation; methods for sample preparation and chemical labeling; photophysics of fluorescent proteins and organic dyes; and computational image analysis and data processing.Recommended prerequisites: Calculus II or higher, Introduction to Biology. Required prerequisites: CHEM 1420, 1620 or 1810.
—
—
3.73
Spring 2026
Provide science graduate students interested in an academic career with training in teaching at the postsecondary level. Specifically, the course is intended to introduce instructional practices that have been empirically demonstrated to enhance students' learning & attitudes toward science & their associated learning theories. To provide students with opportunity to develop teaching philosophy & implement, & receive feedback on a unit & lecture.
—
—
3.49
Spring 2026
An introduction to classic & modern approaches of chemical analysis of biological systems. Detection of analytes ranging from small molecules & proteins, to cells, to structured materials. Focus on immunoassays: ELISA, bead-based assays, & surface plasmon resonance for analytes in solution; ELISpot for cell secretions; flow cytometry for cells and beads; & immunostaining for biomaterials and tissue samples. Prerequisite: CHEM 4410
No course sections viewed yet.