Your feedback has been sent to our team.
1.00
3.00
3.68
Spring 2026
Application of experimental methods to the design of experiments. Topics include data acquisition, hypothesis testing, and uncertainty assessment. Includes two experiments to investigate wing aerodynamic behaviors in a low speed wind tunnel and supersonic flow over a model or through a nozzle. Additional activities and experiments may vary to meet student interest. Prerequisite: MAE 2330 or MAE 3230.
1.79
4.00
2.98
Spring 2026
Kinematic and kinetic aspects of motion modeling applied to rigid bodies and mechanisms. Focus on free-body-analysis. Use of work-energy and impulse-momentum motion prediction methods. Use of Cartesian and simple non-Cartesian coordinate systems. Rotational motion, angular momentum, and rotational kinetic-energy modeling; body mass rotational moment of inertia. Relative-velocity and acceleration. Prerequisite: MAE 2300 or CE 2300
1.97
3.76
3.31
Spring 2026
Applies mechanical analysis to the basic design of machine elements; basic concepts in statistics and reliability analysis, advanced strength of materials, and fatigue analysis; and the practical design and applications of materials to fastening systems, weldments, power screws, springs, journal and anti-friction bearings, gears, brake clutches and flexible power transmission elements. Prerequisites: MAE 3310.
2.33
2.00
3.65
Spring 2026
Application of experimental methods to the design of experiments. Topics include data acquisition, hypothesis testing, and uncertainty assessment. Students will complete an array of experiments requiring the examination of test equipment and procedures for heat transfer, mechanical and fluid systems. Pre-requisites: MAE 2330 or MAE 3230.
2.43
3.54
3.08
Spring 2026
Analysis of steady state and transient heat conduction in solids with elementary analytical and numerical solution techniques; fundamentals of radiation heat transfer, including exchange among black and diffuse gray surfaces; free and forced convective heat transfer with applications of boundary layer theory and an introduction to mass transfer by diffusion using the heat-mass transfer analogy. Prerequisite: MAE 2100 and MAE 3210.
2.67
2.00
3.63
Spring 2026
Introduces numerical modeling concepts used in engineering simulation tools like computational fluid dynamics and structural mechanics analysis software. Topics covered include discretization methods of partial differential equations, numerical solutions of linear matrix equations, and relaxation techniques for solving stiff equation sets. As part of the course, students will use Matlab, CFD, and mechanical analysis tools.
3.00
3.33
3.69
Spring 2026
Communication through engineering graphics; engineering drawing interpretation, sectioning, auxiliary views; and analysis and design of mechanical devices. Workshop includes CAD and solid modeling.
3.25
3.38
3.23
Spring 2026
Boundary layers: similarity, Blasius and momentum integral methods. Ideal Flows: Kelvin's circulation theorem; complex potential; superposition; Kutta-Joukowski; thin airfoils; finite wings; lifting lines. Gas dynamics: sound waves; normal and oblique shocks; Prandtl-Meyer expansion; quasi 1D flows; converging-diverging nozzles; choked flows; diffusers; Rayleigh line and Fanno line flows. Prerequisites: MAE 2100 and MAE 3210
3.33
4.00
3.11
Spring 2026
Discussion of the Keplerian two-body problem; elliptic, parabolic, and hyperbolic orbits; solution of Kepler's equation and analogs; the classical orbital elements; orbit determination; prediction of future position and velocity; orbital perturbations; Lambert's problem. Prerequisites: MAE 2320.
3.50
3.36
3.06
Spring 2026
Includes the formulation of the first and second laws of thermodynamics; energy conservation; concepts of equilibrium, temperature, energy, and entropy; equations of state; processes involving energy transfer as work and heat; reversibility and irreversibility; closed and open systems; and cyclic processes. Prerequisite: APMA 1110 or MATH 1320
No course sections viewed yet.