Your feedback has been sent to our team.
—
—
3.46
Spring 2026
The topics covered are: dimensional analysis; physical properties of fluids; kinematic descriptions of flow; streamlines, path lines and streak lines; stream functions and vorticity; hydrostatics and thermodynamics; Euler and Bernoulli equations; irrotational potential flow; exact solutions to the Navier-Stokes equation; effects of viscosity - high and low Reynolds numbers; waves in incompressible flow; hydrodynamic stability. Prerequisite: Graduate Standing
—
—
3.50
Spring 2026
Review of classical thermodynamics; introduction to kinetic theory; quantum mechanical analysis of atomic and molecular structure; statistical mechanical evaluation of thermodynamic properties; chemical thermodynamics and equilibria. Prerequisite: Graduate standing.
—
—
3.55
Spring 2026
Analytical and computational treatment for modeling and simulation of 3-Dimensional multibody mechanical systems. Provide a systematic and consistent basis for analyzing the interactions between motion constraints, kinematics, static, dynamic, and control behavior of multibody mechanical systems. Applications to machinery, robotic devices and mobile robots, biomechanical models for gait analysis and human motions, and motion control. Matrix modeling procedures with symbolic and numerical computational tools will be utilized for demonstrating the methods developed in this course. Focus on the current research and computational tools and examine a broad spectrum of physical systems where multibody behavior is fundamental to their design and control. Prerequisite: Engineering degree and familiarity with a programming language.
5.00
5.00
3.57
Spring 2026
This course has been developed for general graduate students and advanced undergraduate students in engineering. Assuming only basic knowledge of matrix operations, differential equations and electric circuits, the course aims to introduce, through numerous examples, fundamental concepts and tools for the analysis and design of control systems.
2.67
2.00
3.63
Spring 2026
Introduces numerical modeling concepts used in engineering simulation tools like computational fluid dynamics and structural mechanics analysis software. Topics covered include discretization methods of partial differential equations, numerical solutions of linear matrix equations, and relaxation techniques for solving stiff equation sets. As part of the course, students will use Matlab, CFD, and mechanical analysis tools.
2.33
2.00
3.65
Spring 2026
Application of experimental methods to the design of experiments. Topics include data acquisition, hypothesis testing, and uncertainty assessment. Students will complete an array of experiments requiring the examination of test equipment and procedures for heat transfer, mechanical and fluid systems. Pre-requisites: MAE 2330 or MAE 3230.
1.00
3.00
3.68
Spring 2026
Application of experimental methods to the design of experiments. Topics include data acquisition, hypothesis testing, and uncertainty assessment. Includes two experiments to investigate wing aerodynamic behaviors in a low speed wind tunnel and supersonic flow over a model or through a nozzle. Additional activities and experiments may vary to meet student interest. Prerequisite: MAE 2330 or MAE 3230.
3.00
3.33
3.69
Spring 2026
Communication through engineering graphics; engineering drawing interpretation, sectioning, auxiliary views; and analysis and design of mechanical devices. Workshop includes CAD and solid modeling.
—
—
3.71
Spring 2026
Applies basic engineering science, design methods, and systems analysis to developing areas and current problems in mechanical engineering. Topics vary based on student and faculty interest. Prerequisite: 3rd or 4th year standing.
—
—
3.73
Spring 2026
Concepts of stress, strain, equilibrium, compatibility; Hooke's law (isotropic materials); displacement and stress formulations of elasticity problems; plane stress and strain problems in rectangular coordinates (Airy's stress function approach); plane stress and strain problems in polar coordinates, axisymmetric problems; thermal stress; and energy methods.
No course sections viewed yet.