Your feedback has been sent to our team.
2.43
3.54
3.08
Spring 2026
Analysis of steady state and transient heat conduction in solids with elementary analytical and numerical solution techniques; fundamentals of radiation heat transfer, including exchange among black and diffuse gray surfaces; free and forced convective heat transfer with applications of boundary layer theory and an introduction to mass transfer by diffusion using the heat-mass transfer analogy. Prerequisite: MAE 2100 and MAE 3210.
4.56
3.67
3.36
Spring 2026
Presents the synergistic integration of mechanical engineering with electronics and computer control in the design of industrial products and processes. Surveys basic electronics, electromechanical actuators, analog and digital signals, sensors, basic control algorithms, and microcontrol programming. Weekly laboratory exercises and a final design project. Prerequisite: Third year standing in ME or AE or instructor permission.
1.97
3.76
3.31
Spring 2026
Applies mechanical analysis to the basic design of machine elements; basic concepts in statistics and reliability analysis, advanced strength of materials, and fatigue analysis; and the practical design and applications of materials to fastening systems, weldments, power screws, springs, journal and anti-friction bearings, gears, brake clutches and flexible power transmission elements. Prerequisites: MAE 3310.
1.79
4.00
2.98
Spring 2026
Kinematic and kinetic aspects of motion modeling applied to rigid bodies and mechanisms. Focus on free-body-analysis. Use of work-energy and impulse-momentum motion prediction methods. Use of Cartesian and simple non-Cartesian coordinate systems. Rotational motion, angular momentum, and rotational kinetic-energy modeling; body mass rotational moment of inertia. Relative-velocity and acceleration. Prerequisite: MAE 2300 or CE 2300
3.33
4.00
3.11
Spring 2026
Discussion of the Keplerian two-body problem; elliptic, parabolic, and hyperbolic orbits; solution of Kepler's equation and analogs; the classical orbital elements; orbit determination; prediction of future position and velocity; orbital perturbations; Lambert's problem. Prerequisites: MAE 2320.
4.67
5.00
3.73
Spring 2026
Discusses the mathematics of feedback control systems; transfer functions; basic servo theory; stability analysis; root locus techniques; and graphical methods. Applications to analysis and design of mechanical systems, emphasizing hydraulic, pneumatic, and electromechanical devices. Prerequisite: MAE 2320 and 3710.
5.00
5.00
3.57
Spring 2026
This course has been developed for general graduate students and advanced undergraduate students in engineering. Assuming only basic knowledge of matrix operations, differential equations and electric circuits, the course aims to introduce, through numerous examples, fundamental concepts and tools for the analysis and design of control systems.
—
—
3.71
Spring 2026
Applies basic engineering science, design methods, and systems analysis to developing areas and current problems in mechanical engineering. Topics vary based on student and faculty interest. Prerequisite: 3rd or 4th year standing.
—
—
3.82
Spring 2026
Applies basic engineering science, design methods, and systems analysis to developing areas and current problems in mechanical engineering. Topics vary based on student and faculty interest.
—
—
4.00
Spring 2026
Individual survey, analysis, or apparatus project in the mechanical engineering field, concluded with the submission of a formal report. Subject originates with students wishing to develop a technical idea of personal interest. One hour conference per week. Prerequisite: Professional standing and prior approval by a faculty member who is project supervisor. Prerequisite: fourth year standing.
No course sections viewed yet.