Your feedback has been sent to our team.
—
—
3.78
Fall 2025
Mechanical design and build of a robot complete with sensors and actuators. Install Robot Operating System (ROS) and operate. Communication using ROS. Integration of microcontrollers and onboard computers. Object recognition. Simultaneous Localization and Mapping (SLAM) of the environment. Prerequisites: undergraduate dynamics; a programming course in Python, C++, or MATLAB; or instructor's permission
—
—
—
Spring 2026
Discussion of turbulence in engineering and natural systems; turbulent flow physics and statistical properties for velocity, kinetic energy, and dissipation; turbulent length, velocity, and time scales; turbulence governing equations and modeling. Multiphase flow in engineering and natural systems; particle characteristics, multiphase flow equations of motion, trajectories and coupling regimes, including turbulent particle interactions. Prerequisite MAE 3210 or CE 3210 or equivalent
—
—
—
Spring 2025
Fundamentals of modern wind turbines with emphasis on mechanical and aerospace engineering aspects as well as design and economic considerations. Topics include wind resources, aerodynamics and performance, control of turbine dynamics for power and safety, structural loads and response, blade materials and design, siting and installation, and economic drivers of wind systems. Prerequisite: MAE/CE 3210 Fluid Mechanics or equivalent
—
—
3.46
Spring 2026
The topics covered are: dimensional analysis; physical properties of fluids; kinematic descriptions of flow; streamlines, path lines and streak lines; stream functions and vorticity; hydrostatics and thermodynamics; Euler and Bernoulli equations; irrotational potential flow; exact solutions to the Navier-Stokes equation; effects of viscosity - high and low Reynolds numbers; waves in incompressible flow; hydrodynamic stability. Prerequisite: Graduate Standing
—
—
3.60
Fall 2025
Analyzes the theory and solution methods applicable to multi-dimensional compressible inviscid gas flows at subsonic, supersonic, and hypersonic speeds; similarity and scaling rules from small-petrurbation theory, introduction to transonic and hypersonic flows; method-of-characteristics applications to nozzle flows, jet expansions, and flows over bodies one dimensional non-steady flows; properties of gases in thermodynamic equilibrium, including kinetic-theory, chemical-thermodynamics, and statistical-mechanics considerations; dissociation and ionization process; quasi-equilibrium flows; and introduction to non-equilibrium flows. Prerequisite: MAE 6100.
—
—
3.38
Fall 2025
Review of ordinary differential equations, initial/boundary value problems. Linear algebra including systems of linear equations, matrices, eigenvalues, eigenvectors, diagonalization. Solution of partial differential equations that govern physical phenomena in science and engineering by separation by variables, superposition, Fourier series, variation of parameter, d'Alembert's solution. Cross-listed as APMA 6410. Prerequisite: Graduate standing.
—
—
3.81
Spring 2026
Role of statistics in science, hypothesis tests of significance, confidence intervals, design of experiments, regression, correlation analysis, analysis of variance, and introduction to statistical computing with statistical software libraries. Cross-listed as APMA 6430. Prerequisite: Admission to graduate studies or instructor permission.
—
—
3.77
Spring 2026
Study of a specialized, advanced, or exploratory topic relating to mechanical or aerospace engineering science, at the first-graduate-course level. May be offered on a seminar or a team-taught basis. Subjects selected according to faculty interest. New graduate courses are usually introduced in this form. Specific topics and prerequisites are listed in the Course Offering Directory.
5.00
5.00
3.57
Spring 2026
This course has been developed for general graduate students and advanced undergraduate students in engineering. Assuming only basic knowledge of matrix operations, differential equations and electric circuits, the course aims to introduce, through numerous examples, fundamental concepts and tools for the analysis and design of control systems.
—
—
3.80
Spring 2026
The topics covered are: review of vectors, matrices, and numerical solution techniques; discrete systems; variational formulation and approximation for continuous systems; linear finite element method in solid mechanics; formulation of isoparametric finite elements; finite element method for field problems, heat transfer, and fluid dynamics. Prerequisite: MAE 6020 or equivalent
No course sections viewed yet.