• MAE 4710

    Mechatronics
     Rating

    4.56

     Difficulty

    3.67

     GPA

    3.36

    Last Taught

    Spring 2026

    Presents the synergistic integration of mechanical engineering with electronics and computer control in the design of industrial products and processes. Surveys basic electronics, electromechanical actuators, analog and digital signals, sensors, basic control algorithms, and microcontrol programming. Weekly laboratory exercises and a final design project. Prerequisite: Third year standing in ME or AE or instructor permission.

  • MAE 3620

    Machine Elements and Fatigue in Design
     Rating

    1.97

     Difficulty

    3.76

     GPA

    3.31

    Last Taught

    Spring 2026

    Applies mechanical analysis to the basic design of machine elements; basic concepts in statistics and reliability analysis, advanced strength of materials, and fatigue analysis; and the practical design and applications of materials to fastening systems, weldments, power screws, springs, journal and anti-friction bearings, gears, brake clutches and flexible power transmission elements. Prerequisites: MAE 3310.

  • MAE 3610

    Aerospace Materials
     Rating

    3.15

     Difficulty

    3.78

     GPA

    3.18

    Last Taught

    Fall 2025

    Introduces physical-chemical/microstructural and working mechanical properties, along with practical applications, for materials of wide interest on aerospace materials. Includes common metal, polymer, ceramic, and composite materials. Topics include standard materials names/designations; standard forming methods; usual strengthening means; temperature and temperature-history effects. Prerequisite CHEM 1410 or 1610 or CHEM 1810: Corequisite MAE 2310 or CE 2310.

  • MAE 2320

    Dynamics
     Rating

    1.79

     Difficulty

    4.00

     GPA

    2.98

    Last Taught

    Spring 2026

    Kinematic and kinetic aspects of motion modeling applied to rigid bodies and mechanisms. Focus on free-body-analysis. Use of work-energy and impulse-momentum motion prediction methods. Use of Cartesian and simple non-Cartesian coordinate systems. Rotational motion, angular momentum, and rotational kinetic-energy modeling; body mass rotational moment of inertia. Relative-velocity and acceleration. Prerequisite: MAE 2300 or CE 2300

  • MAE 3010

    Astronautics
     Rating

    3.33

     Difficulty

    4.00

     GPA

    3.11

    Last Taught

    Spring 2026

    Discussion of the Keplerian two-body problem; elliptic, parabolic, and hyperbolic orbits; solution of Kepler's equation and analogs; the classical orbital elements; orbit determination; prediction of future position and velocity; orbital perturbations; Lambert's problem. Prerequisites: MAE 2320.

  • MAE 3310

    Aerospace Structures
     Rating

    2.52

     Difficulty

    4.00

     GPA

    3.06

    Last Taught

    Fall 2025

    Analyzes the design of elements under combined stresses; bending and torsional stresses in thin-walled beams; energy and other methods applied to statically determinate and indeterminate aerospace structural elements; buckling of simple structural members; and matrix and finite element analysis. Prerequisite: MAE 2310 or CE 2310.

  • MAE 3710

    Mechanical Systems
     Rating

    3.06

     Difficulty

    4.35

     GPA

    2.70

    Last Taught

    Fall 2025

    Presents general concepts of dynamical systems modeling and provides mathematical tools to develop and analyze models that describe input/output behaviors of physical systems. Topics include basic elements of mechanical systems, transfer functions, frequency response, stability and poles, resonance and natural frequency, transient and time constant, steady state and DC gain, block diagrams. Prerequisites: MAE 2320 and APMA 2130

  • MAE 4270

    Experimental Robotics
     Rating

    2.67

     Difficulty

    5.00

     GPA

    3.78

    Last Taught

    Fall 2025

    Mechanical design and build of a robot complete with sensors and actuators. Install Robot Operating System (ROS) and operate. Communication using ROS. Integration of microcontrollers and onboard computers. Object recognition. Simultaneous Localization and Mapping (SLAM) of the environment. Pre-requisites: 4th year standing or instructor's permission

  • MAE 4730

    Introduction to Automatic Controls
     Rating

    4.67

     Difficulty

    5.00

     GPA

    3.73

    Last Taught

    Spring 2026

    Discusses the mathematics of feedback control systems; transfer functions; basic servo theory; stability analysis; root locus techniques; and graphical methods. Applications to analysis and design of mechanical systems, emphasizing hydraulic, pneumatic, and electromechanical devices. Prerequisite: MAE 2320 and 3710.

  • MAE 6600

    Introduction to Control Systems
     Rating

    5.00

     Difficulty

    5.00

     GPA

    3.57

    Last Taught

    Spring 2026

    This course has been developed for general graduate students and advanced undergraduate students in engineering. Assuming only basic knowledge of matrix operations, differential equations and electric circuits, the course aims to introduce, through numerous examples, fundamental concepts and tools for the analysis and design of control systems.