Your feedback has been sent to our team.
4.00
1.00
3.86
Fall 2025
Coverage of the design process including project management, specifications, budgeting and case histories, Conceptual, preliminary, and detailed design phases. Technical proposal and report preparation and technical presentations. Organization of design teams to work on specific semester long mechanical design projects selected to illustrate the design process. Engineering 4th Year Standing or instructor permission.
3.33
2.00
3.53
Fall 2025
Overview of the mechanical engineer's role as analyst and designer. Introduction to manufacturing tools, equipment, and processes; properties of materials relative to manufacture and design. Pre-requisite: PHYS 1425 or PHYS 1420 or PHYS 1710. Co-requisite: APMA 2120 or MATH 2310 or MATH 2315
4.33
2.00
3.64
Fall 2025
Historical introduction, standard atmosphere, basic aerodynamics, airfoils and wings, flight mechanics, stability and control, propulsion (airbreathing, rocket and space), orbital mechanics.
4.67
2.00
3.78
Fall 2025
Application of experimental methods for thermal-fluid behavior. Topics include fluid properties, pressure and buoyancy, jet momentum, dimensional analysis, pipe flow, data analysis, particle image velocimetry, and measurement uncertainty. The laboratory experience will include activities to reinforce principles from Thermodynamics (MAE 2100) and Fluid Mechanics (MAE 3210). Corequisite: MAE 3210 OR MAE 3215
2.67
2.00
3.63
Fall 2025
Introduces numerical modeling concepts used in engineering simulation tools like computational fluid dynamics and structural mechanics analysis software. Topics covered include discretization methods of partial differential equations, numerical solutions of linear matrix equations, and relaxation techniques for solving stiff equation sets. As part of the course, students will use Matlab, CFD, and mechanical analysis tools.
4.00
2.50
3.39
Fall 2025
Aero- and thermodynamics of compressible fluids in air-breathing and rocket engines. Performance and cycle analysis of air-breathing engines, emphasizing turbojets, turbofans, turboprops, and ramjets; space propulsion including rocket dynamics, thrust chamber thermodynamics, and propulsion performance; performance of axial-flow and centrifugal compressors; turbines; and the matching of engine components. Prerequisite: MAE 3210 and MAE 2100.
3.59
2.88
3.19
Fall 2025
Basic concepts of mechanics, systems of forces and couples: equilibrium of particles and rigid bodies; analysis of structures: trusses, frames, machines; internal forces, shear and bending moment diagrams; distributed forces; friction, centroids and moments of inertia; introduction to stress and strain; computer applications. Cross-listed as CE 2300. Prerequisite: PHYS 1425 or PHYS 1420 or PHYS 1710
4.00
3.00
3.60
Fall 2025
Introduces continuum mechanics and mechanics of deformable solids. Vectors and cartesian tensors, stress, strain, deformation, equations of motion, constitutive laws, introduction to elasticity, thermal elasticity, viscoelasticity, plasticity, and fluids. Cross-listed as APMA 6020, AM 6020. Taught concurrently w/ CE 6720. Prerequisite: Instructor permission.
4.38
3.15
3.18
Fall 2025
Normal stress and strain, thermal strain, shear stress, shear strain; stress and strain transformations; Mohr's circle for plane stress and strain; stresses due to combined loading; axially loaded members; torsion of circular and thin-walled closed sections; statically indeterminate systems; deformation, strains and stresses in beams; beam deflections; column stability. Prerequisites: MAE 2300 or CE 2300
3.00
3.33
3.69
Fall 2025
Communication through engineering graphics; engineering drawing interpretation, sectioning, auxiliary views; and analysis and design of mechanical devices. Workshop includes CAD and solid modeling.