Your feedback has been sent to our team.
—
—
—
Fall 2025
Quantum electronics, the study of light and matter interaction, has become the cornerstone in many areas of optical science and technology. This course reviews the principles of lasers then introduces the generalized nonlinear wave equations. This course will cover typical nonlinear effects and their applications in telecommunication, ultrafast laser, quantum computing/information and chemical/bio spectroscopy. Prerequisite: ECE 3209.
—
—
3.04
Spring 2026
Analyzes the measurement and behavior of high-frequency circuits and components; equivalent circuit models for lumped elements; measurement of standing waves, power, and frequency; use of vector network analyzers and spectrum analyzers; and computer-aided design, fabrication, and characterization of microstrip circuits. Corequisite: ECE 5260 or instructor permission.
—
—
—
Fall 2025
This course explores the intricacies of AI hardware, including the current landscape and anticipating the necessary developments in response to AI's rapid growth and widespread integration across all computing tiers. Through this exploration, you will gain an understanding of both the existing technologies and the future challenges in AI hardware design and implementation. Prerequisites: ECE 2330 or CS 2130.
—
—
—
Spring 2026
This course explores advanced embedded systems topics such as design and validation of embedded computing systems, embedded C programming, real-time operating systems for microcontrollers, safety and security, cyber-physical systems, Internet of Things, and robotics. The course includes hands-on experience, paper presentations, and discussions. Prerequisite: ECE 3430
—
—
3.76
Spring 2026
A fourth-level undergraduate course covering a topic not normally covered in the course offerings. The topic usually reflects new developments in the electrical and computer engineering field. Offering is based on student and faculty interests.
—
—
3.24
Spring 2026
Topics include the design and analysis of analog integrated circuits; feedback amplifier analysis and design, including stability, compensation, and offset-correction; layout and floor-planning issues associated with mixed-signal IC design; selected applications of analog circuits such as A/D and D/A converters, references, and comparators; extensive use of CAD tools for design entry, simulation, and layout; and the creation of an analog integrated circuit design project. Prerequisites: ECE 3660 or instructor permission.
—
—
3.36
Fall 2025
Explores the statistical methods of analyzing communications systems: random signals and noise, statistical communication theory, and digital communications. Analysis of baseband and carrier transmission techniques; and design examples in satellite communications. Prerequisite: (APMA 3100 or MATH 3100) AND (ECE 3750 or ECE 2700)
—
—
—
Spring 2026
This is a survey course in the theory and technology of modern wireless communication systems, exemplified in cellular telephony, paging, microwave distribution systems, wireless networks, and even garage door openers. Wireless technology is inherently interdisciplinary, and the course seeks to serve the interests of a variety of students.
—
—
—
Spring 2026
Under faculty supervision, students plan a project of at least one semester's duration, conduct the analysis or design and test, and report on the results. If this work is to be the basis for an undergraduate thesis, the course should be taken no later than the seventh semester. Prerequisite: Instructor permission.
—
—
3.90
Spring 2026
Design, analysis and testing of an electrical system to meet specific needs, considering applicable standards, health, safety, welfare, and societal impacts as well as tradeoff and constraint considerations. Semester-long team project develops physical prototype (not simulation). Counts major design experience for students in ECE. Prerequisites (ECE 3430 or ECE 3502 ECR II) AND (ECE 3750 or ECE 2700) AND 4th year standing
No course sections viewed yet.