Your feedback has been sent to our team.
4.17
3.50
3.38
Fall 2025
Design and analysis of wireless communication circuits. Topics covered include transmission lines, antennas, filters, amplifiers, mixers, noise, and modulation techniques. The course is built around a semester long design project. Prerequisite ECE 2700 or ECE 3750
—
—
—
Fall 2025
Quantum electronics, the study of light and matter interaction, has become the cornerstone in many areas of optical science and technology. This course reviews the principles of lasers then introduces the generalized nonlinear wave equations. This course will cover typical nonlinear effects and their applications in telecommunication, ultrafast laser, quantum computing/information and chemical/bio spectroscopy. Prerequisite: ECE 3209.
—
—
—
Fall 2025
This course explores the intricacies of AI hardware, including the current landscape and anticipating the necessary developments in response to AI's rapid growth and widespread integration across all computing tiers. Through this exploration, you will gain an understanding of both the existing technologies and the future challenges in AI hardware design and implementation. Prerequisites: ECE 2330 or CS 2130.
4.50
4.00
3.68
Fall 2025
Design, analysis and testing of an embedded computer system to meet specific needs, considering public health, safety and welfare as well as societal impacts. Tradeoff analysis and constraint satisfaction facilitated by the use of appropriate engineering analysis techniques. Semester-long team project develops physical prototype. Counts as major design experience for ECE students. Prerequisites (ECE 3430 or ECE 3502 ECR II) AND (ECE 3750 or ECE 2700) AND 4th year standing
2.22
3.33
3.63
Fall 2025
A fourth-level undergraduate course covering a topic not normally covered in the course offerings. The topic usually reflects new developments in the electrical and computer engineering field. Offering is based on student and faculty interests.
—
—
3.76
Fall 2025
A fourth-level undergraduate course covering a topic not normally covered in the course offerings. The topic usually reflects new developments in the electrical and computer engineering field. Offering is based on student and faculty interests.
—
—
3.36
Fall 2025
Explores the statistical methods of analyzing communications systems: random signals and noise, statistical communication theory, and digital communications. Analysis of baseband and carrier transmission techniques; and design examples in satellite communications. Prerequisite: (APMA 3100 or MATH 3100) AND (ECE 3750 or ECE 2700)
—
—
3.42
Fall 2025
An introduction to digital signal processing. Topics include discrete-time signals and systems, application of z-transforms, the discrete-time Fourier transform, sampling, digital filter design, the discrete Fourier transform, the fast Fourier transform, quantization effects and nonlinear filters. Prerequisite: CS 2130.
5.00
4.00
3.58
Fall 2025
Under faculty supervision, students plan a project of at least one semester's duration, conduct the analysis or design and test, and report on the results. If this work is to be the basis for an undergraduate thesis, the course should be taken no later than the seventh semester. Prerequisite: Instructor permission.
—
—
3.90
Fall 2025
Design, analysis and testing of an electrical system to meet specific needs, considering applicable standards, health, safety, welfare, and societal impacts as well as tradeoff and constraint considerations. Semester-long team project develops physical prototype (not simulation). Counts major design experience for students in ECE. Prerequisites (ECE 3430 or ECE 3502 ECR II) AND (ECE 3750 or ECE 2700) AND 4th year standing