Your feedback has been sent to our team.
3.33
3.67
3.66
Spring 2026
This course focuses on applying data analytic techniques to business, including customer analytics, business analytics, and web analytics through mining of social media and other online data. Several projects are incorporated into the course. Prerequisite: A prior course in regression and a prior course in programming.
4.42
2.38
3.66
Spring 2026
This course includes an overview of parametric vs. non-parametric methods including one-sample, two-sample, and k-sample methods; pair comparison and block designs; tests for trends and association; multivariate tests; analysis of censored data; bootstrap methods; multi-factor experiments; and smoothing methods. Prerequisite: A prior course in statistics.
—
—
3.70
Spring 2026
This course develops skills related to the practice of statistical consulting. It covers conceptual topics and provides experience with data analysis projects found in or resembling those in statistical practice. Conceptual discussion in lectures is supplemented with hands-on practice in applied data-analysis tasks using SAS or R statistical software.Prerequisite: Graduate standing in Statistics
3.91
2.77
3.70
Spring 2026
This course provides an introduction to data analysis using the Python programming language. Topics include using an integrated development environment; data analysis packages numpy, pandas and scipy; data loading, storage, cleaning, merging, transformation, and aggregation; data plotting and visualization. Prerequisite: A prior course in statistics and a prior course in programming.
4.67
2.00
3.70
Spring 2026
This course develops fundamental methodology to the analysis of multivariate data. Topics include the multivariate normal distributions, multivariate regression, multivariate analysis of variance (MANOVA), principal components analysis, factor analysis, and discriminant analysis. Conceptual discussion in lectures is supplemented with hands-on practice in applied data-analysis tasks using SAS or R statistical software. Prerequisite: Graduate standing in Statistics, or instructor permission.
2.41
3.12
3.70
Spring 2026
This course introduces methods for presenting data graphically and in tabular form, including the use of software to create visualizations. Also introduced are databases, with topics including traditional relational databases and SQL (Structured Query Language) for retrieving information. Prerequisite: A prior course in statistics and a prior course in R programming.
2.33
3.00
3.72
Spring 2026
Introduces various topics in machine learning, including regression, classification, resampling methods, linear model selection and regularization, tree-based methods, support vector machines, and unsupervised learning. The statistical software R is incorporated throughout.Prerequisite: STAT 5120, STAT 6120, or ECON 3720, and previous experience with R Prerequisite: STAT 5120, STAT 6120, or ECON 3720, and previous experience with R
2.94
2.47
3.73
Spring 2026
This course provides a survey of regression analysis techniques, covering topics from simple regression, multiple regression, logistic regression, and analysis of variance. The primary focus is on model development and applications. Prerequisite: A prior course in statistics.
3.18
2.80
3.75
Spring 2026
This course provides an introduction to various topics in data science using the Python programming language. The course will start with the basics of Python, and apply them to data cleaning, merging, transformation, and analytic methods drawn from data science analysis and statistics, with an emphasis on applications. No prior knowledge of statistics, data science, or programming is required.
—
—
3.76
Spring 2026
This course provides the opportunity to offer a new topic in the subject area of Statistics.
No course sections viewed yet.