Your feedback has been sent to our team.
4.36
3.53
3.28
Spring 2026
You will learn how excitable tissue, nerves and muscle, and the cardiovascular and respiratory systems function. You will develop an understanding of mechanisms, with an introduction to structure, an emphasis on quantitative analysis, and integration of hormonal and neural regulation and control. Prerequisites: (PHYS 1425 or PHYS 1420 or PHYS 1710) AND (APMA 1110 or MATH 1320) AND (CHEM 1410 or CHEM 1610 or CHEM 1810) AND BME Major or Minor
4.16
3.63
3.35
Spring 2026
Intro to fundamentals of cell structure and function, emphasizing the techniques and technologies available for the study of cell biology. Content includes cell structure and function; energy flow in cells; information flow in cells focuses on modern molecular biology and genetic engineering, and includes DNA replication, the cell cycle, gene expression, gene regulation, and protein synthesis. Prerequisite: CHEM 1410 or CHEM 1610 or CHEM 1810 or instructor permission.
4.00
4.00
3.83
Spring 2026
Second half of a year-long design project required for BME majors. Students select, formulate, & solve a design problem related to a device or a system. Projects use conceptual design, skills obtained in the integrated lab & substantial literature and patent reviews. Projects are sponsored by faculty, physicians and/or companies. Students may work on their own with outside team members when appropriate or with other students in integrative teams. Prerequisite: 4th year standing in the Biomedical Engineering major or instructor permission.
3.87
4.33
3.64
Spring 2026
Second part of a year-long course integrating concepts and skills from prior courses to formulate and solve problems in biomedical systems, including experimental design, performance and analysis. Prerequisite: 3rd Year standing in BME major, or instructor permission
—
—
—
Spring 2026
The focus for the course will be establishing a regulatory mindset for students to engage with the Food & Drug Administration, primarily the Center for Medical Devices and Radiological Health. The material covered throughout the semester is presented in a series of lectures, design prompts, exercises, workshops, and reviews. Students will develop their own project(s) and work as individuals and in small groups/teams. Prereq: BME 2000 and BME 2101
—
—
3.95
Spring 2026
This course introduces techniques for constructing mathematical and computational models of biological processes. We utilize experimental data to validate those models at many levels of organizational scale -- from genome to whole-tissue. Prerequisites: APMA 2130 or MATH 3250, BME 2101, BME 2104, and BME 2315.
—
—
3.74
Spring 2026
Introduces genomics and bioinformatics theory and tools to analyze large scale biological data. Specific topics covered are Introduction to Linux and R statistical programming language, computations on the high-performance computational cluster, analysis of sequencing data with applications in gene expression and protein/DNA interactions, differential expression analysis, pathway and co-expression network analysis. Prereq: (APMA 3110 or APMA 3100 or MATH 3100) and (CS 1110 or CS 1111 or CS 1112 with grade of C- or better or successfully completed CS 1110 place-out test) and BME major or minor
—
—
—
Spring 2026
This course will provide students with a quantitative framework for identifying and addressing important biological questions at the molecular, cell, and tissue levels. The course will focus on the interplay between methods and logic, with an emphasis on the themes that emerge repeatedly in quantitative experiments.
—
—
3.64
Spring 2026
"We will explore engineering methods to use ""microbes as tools"" for human wellbeing, to understand and combat ""microbes as enemies"" in infectious disease, and to characterize and manipulate ""microbes as partners"" in human health and wellbeing. We will learn how facets of BME are used to test hypotheses of human/microbe relationships and to design strategies to understand and treat disease and improve human wellbeing. Prerequisites: BME 2000 AND (BME 2101 OR BME 2102) AND BME 2104 AND BME 2315"
—
—
4.00
Spring 2026
A year-long research project in biomedical engineering conducted in consultation with a department faculty advisor; usually related to ongoing faculty research. Includes the design, execution, and analysis of experimental laboratory work and computational or theoretical computer analysis of a problem. Requires a comprehensive report of the results. Prerequisite: third- or fourth-year standing, and instructor permission.
No course sections viewed yet.