• BME 4280

    Motion Biomechanics
     Rating

    4.00

     Difficulty

    2.00

     GPA

    3.56

    Last Taught

    Spring 2026

    Focuses on the study of forces (and their effects) that act on the musculoskeletal structures of the human body. Based on the foundations of functional anatomy and engineering mechanics (rigid body and deformable approaches); students are exposed to clinical problems in orthopedics and rehabilitation. Prerequisite: BME 2101 & BME 2220, or instructor permission.

  • BME 4890

    Nanomedicine
     Rating

    3.00

     Difficulty

    2.00

     GPA

    3.49

    Last Taught

    Spring 2026

    Students will design treatment strategies for cancer and cardiovascular disease based on molecular bioengineering principles. Special topics will include design of nanoparticle drug and gene delivery platforms, materials biocompatibility, cancer immunotherapy, and molecular imaging. Prerequisite: BME 2102 and BME 2315 or instructor permission. Recommended prerequisite: BME 2104 or BME 4414.

  • BME 4550

    Special Topics in Biomedical Engineering
     Rating

    4.36

     Difficulty

    2.24

     GPA

    3.77

    Last Taught

    Spring 2026

    Applies engineering science, design methods, and system analysis to developing areas and current problems in biomedical engineering. Topics vary by semester. Recent topics include Medical Imaging Systems Theory, BME Advanced Design, BME Electronics Lab, and Systems Biology Modeling and Experimentation. Prerequisite: third- or fourth-year standing or instructor permission.

  • BME 2315

    Computational Biomedical Engineering
     Rating

    3.67

     Difficulty

    2.36

     GPA

    3.58

    Last Taught

    Spring 2026

    Introduces techniques for constructing predictive or analytical engineering models for biological processes. Teaches modeling approaches using example problems in transport, mechanics, bioelectricity, molecular dynamics, tissue assembly & imaging. Problem sets include 1) linear systems and filtering 2) compartmental modeling 3) numerical techniques 4) finite element / finite difference models and 5) computational automata models. Prereq: CS 1110 or CS 1111 or CS 1112 or CS 1113. Co-requisites: APMA 2120 or MATH 2310 or MATH 2315 or instructor permission.

  • BME 2220

    Biomechanics
     Rating

    3.69

     Difficulty

    3.00

     GPA

    3.25

    Last Taught

    Spring 2026

    Introduces principles of continuum mechanics of biological tissues & systems. 1) Review results used in biomechanics field, 2) properties of living tissue; 3) mechanical basis & effects of pathology & trauma: 4) intro to mechanotransduction, circulatory transport, growth & remodeling & tissue-engineered materials; 5) low Reynolds number flows in vivo & microsystems. Prerequisites: APMA 2120 or MATH 2310 or MATH 2315 and BME Major or Minor

  • BME 4417

    Tissue Engineering
     Rating

    3.67

     Difficulty

    3.00

     GPA

    3.60

    Last Taught

    Spring 2026

    Introduces the fundamental principles of tissue engineering. Topics: tissue organization and dynamics, cell and tissue characterization, cell-matrix interactions, transport processes in engineered tissues, biomaterials and biological interfaces, stem cells and interacting cell fate processes and tissue engineering methods. Examples of approaches for regeneration of cartilage, bone, ligament, tendons, skin and liver are presented. Prerequisites: APMA 2130 or MATH 3250 or APMA 2501 - Differential Equations & Linear Algebra, and BME 2101, and BME 2104, or instructor permission.

  • BME 2102

    Physiology II
     Rating

    3.73

     Difficulty

    3.02

     GPA

    3.53

    Last Taught

    Spring 2026

    Introduces the physiology of the kidney, salt and water balance, gastrointestinal system, endocrine system, and central nervous system, with reference to diseases and their pathophysiology. Prerequisite: (CHEM 1410 or CHEM 1610 or CHEM 1810) AND (PHYS 1425 or PHYS 1420 or PHYS 1710) AND BME 2101, or instructor permission.

  • BME 2000

    Biomedical Engineering Design and Discovery
     Rating

    2.91

     Difficulty

    3.18

     GPA

    3.75

    Last Taught

    Spring 2026

    Provides students with the skills necessary to engage in meaningful engineering design, and focuses on the latter stages of the engineering design process - detailed design, prototyping, and evaluation. Students develop skills in computer assisted design, embedded controls, prototyping, analysis and teamwork. A major focus of the class is the execution of a design project. Prerequisites: PHYS 1425, and BME major or minor. Recommended Corequisite: PHYS 2415 or ECE 2200.

  • BME 3310

    Biomedical Systems Analysis and Design
     Rating

    3.27

     Difficulty

    3.43

     GPA

    3.42

    Last Taught

    Spring 2026

    Presents analytical tools used to model signals & linear systems. BME examples include multicompartment modeling of drug delivery, modeling of dynamic biomechanical systems & electrical circuit models of excitable cells. Topics: signals & systems, convolution, continuous time Fourier transforms, electrical circuits & applications of linear system theory. Prerequisite: PHYS 2415 & APMA 2130, & CS 1110 or equivalent

  • BME 3240

    Biotransport
     Rating

    2.83

     Difficulty

    3.50

     GPA

    3.37

    Last Taught

    Spring 2026

    Introduces principles and application of fluid and mass transport processes in cell, tissue and organ systems. Topics include intro to physiological fluid mechanics in the circulation and tissue, fundamentals of mass transport in biological systems, effects of mass transport and biochemical interactions at the cell and tissue scales and fluid and mass transport in organs. Prerequisites: APMA 2130 or MATH 3250, or APMA 2501 - Differential Equations & Linear Algebra, and BME 2101, and BME 2104, or instructor permission.