Your feedback has been sent to our team.
2.91
3.18
3.75
Spring 2026
Provides students with the skills necessary to engage in meaningful engineering design, and focuses on the latter stages of the engineering design process - detailed design, prototyping, and evaluation. Students develop skills in computer assisted design, embedded controls, prototyping, analysis and teamwork. A major focus of the class is the execution of a design project. Prerequisites: PHYS 1425, and BME major or minor. Recommended Corequisite: PHYS 2415 or ECE 2200.
4.37
3.53
3.28
Spring 2026
You will learn how excitable tissue, nerves and muscle, and the cardiovascular and respiratory systems function. You will develop an understanding of mechanisms, with an introduction to structure, an emphasis on quantitative analysis, and integration of hormonal and neural regulation and control. Prerequisites: (PHYS 1425 or PHYS 1420 or PHYS 1710) AND (APMA 1110 or MATH 1320) AND (CHEM 1410 or CHEM 1610 or CHEM 1810) AND BME Major or Minor
3.73
3.02
3.53
Spring 2026
Introduces the physiology of the kidney, salt and water balance, gastrointestinal system, endocrine system, and central nervous system, with reference to diseases and their pathophysiology. Prerequisite: (CHEM 1410 or CHEM 1610 or CHEM 1810) AND (PHYS 1425 or PHYS 1420 or PHYS 1710) AND BME 2101, or instructor permission.
4.16
3.63
3.35
Spring 2026
Intro to fundamentals of cell structure and function, emphasizing the techniques and technologies available for the study of cell biology. Content includes cell structure and function; energy flow in cells; information flow in cells focuses on modern molecular biology and genetic engineering, and includes DNA replication, the cell cycle, gene expression, gene regulation, and protein synthesis. Prerequisite: CHEM 1410 or CHEM 1610 or CHEM 1810 or instructor permission.
3.69
3.00
3.25
Spring 2026
Introduces principles of continuum mechanics of biological tissues & systems. 1) Review results used in biomechanics field, 2) properties of living tissue; 3) mechanical basis & effects of pathology & trauma: 4) intro to mechanotransduction, circulatory transport, growth & remodeling & tissue-engineered materials; 5) low Reynolds number flows in vivo & microsystems. Prerequisites: APMA 2120 or MATH 2310 or MATH 2315 and BME Major or Minor
3.67
2.36
3.58
Spring 2026
Introduces techniques for constructing predictive or analytical engineering models for biological processes. Teaches modeling approaches using example problems in transport, mechanics, bioelectricity, molecular dynamics, tissue assembly & imaging. Problem sets include 1) linear systems and filtering 2) compartmental modeling 3) numerical techniques 4) finite element / finite difference models and 5) computational automata models. Prereq: CS 1110 or CS 1111 or CS 1112 or CS 1113. Co-requisites: APMA 2120 or MATH 2310 or MATH 2315 or instructor permission.
—
—
3.83
Spring 2025
Project-driven course focusing on biomedical product design with emphasis on marketability, innovation, entrepreneurship and business. Topics include design fundamentals, problem/needs identification, delineation of realistic constraints and product specifications, intellectual property, market analysis, entrepreneurship, specific advanced design, business plan development, venture funding, and medical product testing methods. Pre-requisite: BME 2000 or instructor permission.
—
—
—
Spring 2026
The focus for the course will be establishing a regulatory mindset for students to engage with the Food & Drug Administration, primarily the Center for Medical Devices and Radiological Health. The material covered throughout the semester is presented in a series of lectures, design prompts, exercises, workshops, and reviews. Students will develop their own project(s) and work as individuals and in small groups/teams. Prereq: BME 2000 and BME 2101
3.35
4.54
3.54
Fall 2025
A year-long course integrating concepts and skills from prior courses to formulate and solve problems in biomedical systems, including experimental design, performance and analysis. Testing in tissues/cells & manipulation of molecular constituents to determine structural and functional characteristics for design of therapeutic or measurement systems. Methods incl biochemical, physiological, cell biology, mechanical, electrical and computer, systems, chemical, imaging, and other approaches. Prerequisite: 3rd and 4th Year standing in Biomedical Engineering major
3.87
4.33
3.64
Spring 2026
Second part of a year-long course integrating concepts and skills from prior courses to formulate and solve problems in biomedical systems, including experimental design, performance and analysis. Prerequisite: 3rd Year standing in BME major, or instructor permission
No course sections viewed yet.