Your feedback has been sent to our team.
—
—
3.96
Spring 2026
Applies engineering science, design methods, and system analysis to developing areas and current problems in biomedical engineering. Topics vary by semester.
—
—
4.00
Spring 2026
A year-long research project in biomedical engineering conducted in consultation with a department faculty advisor; usually related to ongoing faculty research. Includes the design, execution, and analysis of experimental laboratory work and computational or theoretical computer analysis of a problem. Requires a comprehensive report of the results. Prerequisite: third- or fourth-year standing, and instructor permission.
—
—
4.00
Spring 2026
In a team, develop, prototype, and conduct verification and validation tests on engineering solutions to clinical challenges, demonstrating concept viability. Formal Design Control, Life Cycle, Risk Analysis, Project Management and Intellectual Property Strategies are introduced. Using Product Development Protocols, prepare a regulatory and implementation pathway analysis for commercialization into clinical practice. Prerequisite: BME 6550 Special Topics: Clinical Technology Continuum of Care
—
—
—
Spring 2026
The focus for the course will be establishing a regulatory mindset for students to engage with the Food & Drug Administration, primarily the Center for Medical Devices and Radiological Health. The material covered throughout the semester is presented in a series of lectures, design prompts, exercises, workshops, and reviews. Students will develop their own project(s) and work as individuals and in small groups/teams. Prereq: BME 2000 and BME 2101
—
—
—
Fall 2025
How does a single fertilized egg grow and divide into every cell in the body, from branching neurons to beating cardiomyocytes and everything in between? Can we harness this knowledge to better understand disease, and to produce therapeutically relevant cell types, tissues, and organs? You will explore what controls stem cell differentiation using hands-on experiments, with emphasis on methods to engineer cell fate for regenerative medicine. Prerequisite: BME 2104
—
—
—
Spring 2026
This course will provide students with a quantitative framework for identifying and addressing important biological questions at the molecular, cell, and tissue levels. The course will focus on the interplay between methods and logic, with an emphasis on the themes that emerge repeatedly in quantitative experiments.
—
—
—
Spring 2025
In-depth study of a biomedical engineering area by an individual student in close collaboration with a departmental faculty member. Requires advanced analysis of a specialized topic in biomedical engineering that is not covered by current offerings. Requires faculty contact time and assignments comparable to regular course offerings. Prerequisite: instructor permission.
—
—
—
Fall 2025
Students learn foundational concepts about cellular behaviors and the molecular mechanisms that drive them by communicating findings that are published in peer-reviewed scientific and engineering papers. Prereqs: coursework in Biochemistry, Cell Biology, Human Physiology/Pathology/Anatomy
—
—
—
Fall 2025
This course presents organ physiology and pathology as systems that can be studied, measured, and manipulated using biomedical engineering tools and approaches by reading peer-reviewed scientific and engineering papers and discussing them in class. Prereq: knowledge of Biochem, Cell Biology, Human Physiology/Pathology/Anatomy
—
—
—
Spring 2026
Students learn foundational principals of advanced research, including hypothesis formulation, experimental design, and statistical methods to assess experimental data as it relates to hypothesis testing. Prerequisites: Previous exposure to statistics and programming in a language such as Python, MATLAB, or R.
No course sections viewed yet.