Your feedback has been sent to our team.
—
—
3.64
Spring 2026
"We will explore engineering methods to use ""microbes as tools"" for human wellbeing, to understand and combat ""microbes as enemies"" in infectious disease, and to characterize and manipulate ""microbes as partners"" in human health and wellbeing. We will learn how facets of BME are used to test hypotheses of human/microbe relationships and to design strategies to understand and treat disease and improve human wellbeing. Prerequisites: BME 2000 AND (BME 2101 OR BME 2102) AND BME 2104 AND BME 2315"
3.33
2.00
3.93
Fall 2025
We will learn to bridge the gap between the fields of bioengineering and the science of how drugs interact with biological systems, i.e., Pharmacology, including the principles of biochemical reaction kinetics and engineering; how such principles can help us describe, model, predict and modulate the outcome of biochemical reactions in cells and biological reactors, and apply these principles to the understanding of pharmacological phenomena. Prerequisites: BME 2104 AND APMA 2130
2.92
2.75
3.60
Fall 2025
Introduces biomaterials science and biological interactions with materials with overview of biomaterials testing (in vitro and in vivo) and characterization. Emphasis on emerging novel strategies and design of biomaterials. Areas of concentration include polymers and ceramics in biomaterials, drug delivery, tissue engineering (orthopaedic and vascular) and nanotechnology. Prerequisite: BME 2101, BME 2104, or instructor permission.
3.67
3.00
3.60
Spring 2026
Introduces the fundamental principles of tissue engineering. Topics: tissue organization and dynamics, cell and tissue characterization, cell-matrix interactions, transport processes in engineered tissues, biomaterials and biological interfaces, stem cells and interacting cell fate processes and tissue engineering methods. Examples of approaches for regeneration of cartilage, bone, ligament, tendons, skin and liver are presented. Prerequisites: APMA 2130 or MATH 3250 or APMA 2501 - Differential Equations & Linear Algebra, and BME 2101, and BME 2104, or instructor permission.
4.36
2.24
3.77
Spring 2026
Applies engineering science, design methods, and system analysis to developing areas and current problems in biomedical engineering. Topics vary by semester. Recent topics include Medical Imaging Systems Theory, BME Advanced Design, BME Electronics Lab, and Systems Biology Modeling and Experimentation. Prerequisite: third- or fourth-year standing or instructor permission.
2.73
3.10
3.24
Fall 2025
Provides a grounding in molecular biology and a working knowledge of recombinant DNA technology, thus establishing a basis for the evaluation and application of genetic engineering in whole animal systems. Beginning with the basic principles of genetics, this course examines the use of molecular methods to study gene expression, deliver viral and non-viral vectors, and its critical role in health. Prerequisite: BME 2101. Co-requisites: BME 2104.
3.00
2.00
3.49
Spring 2026
Students will design treatment strategies for cancer and cardiovascular disease based on molecular bioengineering principles. Special topics will include design of nanoparticle drug and gene delivery platforms, materials biocompatibility, cancer immunotherapy, and molecular imaging. Prerequisite: BME 2102 and BME 2315 or instructor permission. Recommended prerequisite: BME 2104 or BME 4414.
—
—
—
Spring 2025
In-depth study of a biomedical engineering area by an individual student in close collaboration with a departmental faculty member. Requires advanced analysis of a specialized topic in biomedical engineering that is not covered by current offerings. Requires faculty contact time and assignments comparable to regular course offerings. Prerequisite: instructor permission.
—
—
4.00
Spring 2026
A year-long research project in biomedical engineering conducted in consultation with a department faculty advisor; usually related to ongoing faculty research. Includes the design, execution, and analysis of experimental laboratory work and computational or theoretical computer analysis of a problem. Requires a comprehensive report of the results. Prerequisite: third- or fourth-year standing, and instructor permission.
—
—
—
Fall 2025
Students learn foundational concepts about cellular behaviors and the molecular mechanisms that drive them by communicating findings that are published in peer-reviewed scientific and engineering papers. Prereqs: coursework in Biochemistry, Cell Biology, Human Physiology/Pathology/Anatomy
No course sections viewed yet.