Your feedback has been sent to our team.
—
—
3.38
Fall 2025
The statics and dynamics of particles and rigid bodies. Discusses the methods of generalized coordinates, the Langrangian, Hamilton-Jacobi equations, action-angle variables, and the relation to quantum theory. Prerequisite: PHYS 3210 and MATH 5220.
—
—
3.39
Spring 2026
Discusses thermodynamics and kinetic theory, and the development of the microcanonical, canonical, and grand canonical ensembles. Includes Bose-Einstein and Fermi-Dirac distributions, techniques for handling interacting many-particle systems, and extensive applications to physical problems.
—
—
3.38
Fall 2025
A consistent mathematical account of the phenomena of electricity and magnetism; electrostatics and magnetostatics; macroscopic media; Maxwell theory; and wave propagation. Prerequisite: PHYS 7250 or instructor permission.
—
—
3.46
Spring 2026
Development of the theory of special relativity, relativistic electrodynamics, radiation from moving charges, classical electron theory, and Lagrangian and Hamiltonian formulations of electrodynamics. Prerequisite: PHYS 7420 or instructor permission.
—
—
3.42
Fall 2025
Introduces the physical basis of quantum mechanics, the Schroedinger equation and the quantum mechanics of one-particle systems, and stationary state problem. Prerequisite: Twelve credits of 3000-level physics courses and MATH 5210, 5220, or instructor permission.
—
—
3.39
Spring 2026
Includes angular momentum theory, techniques of time-dependent perturbation theory, emission and absorption of radiation, systems of identical particles, second quantization, and Hartree-Fock equations. Prerequisite: PHYS 7610 or instructor permission.
—
—
—
Spring 2026
Independent research or practical training supervised by a faculty member. May be repeated for credit.
—
—
3.67
Spring 2025
Studies nonlinear optical phenomena; the laser, sum, and difference frequency generation, optical parametric oscillation, and modulation techniques. Prerequisite: PHYS 5310 and exposure to quantum mechanics.
—
—
3.82
Spring 2026
The description and basic theory of the electronic properties of solids including band structure, electrical conduction, optical properties, magnetism and super-conductivity. Prerequisite: PHYS 7620 or instructor permission.
—
—
3.55
Fall 2025
Introduces the quantization of field theories, including those based on the Dirac and Klein-Gordon equations. Derives perturbation theory in terms of Feynman diagrams, and applies it to simple field theories with interactions. Introduces the concept of renormalization. Prerequisite: PHYS 7620.
No course sections viewed yet.