Your feedback has been sent to our team.
2.12
3.72
3.52
Fall 2025
Group problem solving, data acquisition and analysis, and application of physics to real life scenarios in the framework of classical mechanics and thermodynamics. The course satisfies the requirements for pre-health students. Co-requisites: PHYS 2010
4.07
3.00
3.53
Fall 2025
Approximately five experiments drawn from the major fields of physics. Introduces precision apparatus, experimental techniques, and methods of evaluating experimental results. Outside report preparation is required. Six laboratory hours. Prerequisite: PHYS 2640 or PHYS 3140
4.00
4.67
3.55
Fall 2025
This course provides an introduction to the Python programming language with applications to common problems in the science and engineering fields. It emphasizes three core skills: analyzing data, simulating data, and visualizing data. No previous programming or computer experience is required. Prerequisite: MATH 1210 or equivalent, or instructor permission.
3.33
5.00
3.55
Fall 2025
This course will study various phenomena in condensed matter physics, including crystallography, basic group theory, x-ray and neutron diffraction, lattice vibrations, electrons in a metal, electronic band theory, electrons under an external magnetic field, semiconductors, magnetism and superconductivity. Not only the topics but also the theoretical and experimental techniques that are covered in this course are essential for PhD students as well as advanced Undergraduate students in Physics, Chemistry, Chemical Engineering, and Materials Science and Engineering to excel in their research career.Prerequisite: PHYS 3650 (Quantum Mechanics I) or an equivalent course
—
—
3.55
Fall 2025
Introduces the quantization of field theories, including those based on the Dirac and Klein-Gordon equations. Derives perturbation theory in terms of Feynman diagrams, and applies it to simple field theories with interactions. Introduces the concept of renormalization. Prerequisite: PHYS 7620.
—
—
3.57
Fall 2025
An introduction to quantum computation, a modern discipline looking for ways to harness the power of quantum mechanics to gain exponential speedup of computations and simulations. We will go through the basic algorithms, discuss error correction and various physical platforms suggested for a possible implementation of such a computer. The course assumes a knowledge of linear algebra, basic probability and familiarity with quantum mechanics.
4.30
2.00
3.75
Fall 2025
This course teaches how to use the computer to solve quantitative problems. This involves learning the skills to write computer programs dedicated to certain tasks, to visualize data graphically, to use scientific software, and to learn other practical skills that are important for a future career in the sciences.
4.67
1.00
3.84
Fall 2025
Overview of current areas of research in the broad discipline of physics, including the historical context of their development. Describes various career options in physics, including academia, government, and industry. Outlines the college physics curriculum and describes opportunities to participate in research at the university.
—
—
3.89
Fall 2025
Discusses nuclear theory and experiment from the modern perspectives of the fundamental theory of the strong interaction: Quantum Chromodynamics (QCD).
—
—
3.99
Fall 2025
Workshops given by UVA Physics faculty describing their research. Restricted to Arts and Sciences graduate students in Physics only