Your feedback has been sent to our team.
3.89
2.95
3.40
Spring 2026
Topics will include systems of linear equations, matrix operations and inverses, vector spaces and subspaces, determinants, eigenvalues and eigenvectors, matrix factorizations, inner products and orthogonality, and linear transformations. Emphasis will be on applications, with computer software integrated throughout the course. The target audience for MATH 3350 is non-math majors from disciplines that apply tools from linear algebra. Credit is not given for both MATH 3350 and 3351.
4.10
4.14
3.43
Spring 2026
Review of topics from Math 3351: vector spaces, bases, dimension, matrices and linear transformations, diagonalization; however, the material is covered in greater depth and generality. The course continues with more advanced topics including Jordan canonical forms and introduction to bilinear forms. Prerequisites: a proof-based course and familiarity with computational aspects of elementary linear algebra. Math 3354 is strongly recommended
3.33
5.00
3.49
Spring 2026
Differential and integral calculus in Euclidean spaces. Implicit and inverse function theorems, differential forms and Stokes' theorem. Prerequisites: multivariable calculus, basic real analysis, linear algebra and one of the following: MATH 4310, MATH 4651, MATH 4770, MATH 3315, or instructor permission.
—
—
3.52
Spring 2026
Examines categories, functors, abelian catqegories, limits and colimits, chain complexes, homology and cohomology, homological dimension, derived functors, Tor and Ext, group homology, Lie algebra homology, spectral sequences, and calculations. Prerequisite: MATH 5770.
—
—
3.56
Spring 2026
A second course in ordinary differential equations, from the dynamical systems point of view. Topics include: existence and uniqueness theorems; linear systems; qualitative study of equilibria and attractors; bifurcation theory; introduction to chaotic systems. Further topics as chosen by the instructor. Applications drawn from physics, biology, and engineering. Prerequisites: MATH 3351 or APMA 3080 and MATH 3310 or MATH 4310.
—
—
3.57
Spring 2026
Topics include the fundamental group, covering spaces, covering transformations, the universal covering spaces, graphs and subgroups of free groups, and the fundamental groups of surfaces. Additional topics will be from homology, including chain complexes, simplicial and singular homology, exact sequences and excision, cellular homology, and classical applications. Prerequisite: MATH 5352, 5770, or equivalent.
4.33
5.00
3.57
Spring 2026
Introduces measure and integration theory. Prerequisite: MATH 5310 or equivalent.
—
—
3.58
Spring 2026
Development of mathematical models and their solutions, including linear programming, the simplex algorithm, dual programming, parametric programming, integer programming, transportation models, assignment models, and network analysis. Prerequisites: MATH 1320, 3351 and a proof-based course (3000, 3310 or 3354).
5.00
5.00
3.65
Spring 2026
This course is a continuation of MATH 2315. Covers topics from linear algebra/differential equations/real analysis. Success in this course and MATH 2315 (grades of B- or higher) exempts the student from the math major requirement of taking MATH 3351 and MATH 3250. Students are encouraged to take more advanced courses in these areas. Prerequisite: MATH 2315.
4.00
1.29
3.77
Spring 2026
Studies basic concepts, operations, and structures occurring in number systems, number theory, and algebra. Inquiry-based student investigations explore historical developments and conceptual transitions in the development of number and algebraic systems.
No course sections viewed yet.