Your feedback has been sent to our team.
—
—
—
Fall 2025
Devoted to chomology theory: cohomology groups, the universal coefficient theorem, the Kunneth formula, cup products, the cohomology ring of manifolds, Poincare duality, and other topics if time permits. Prerequisite: MATH 7800.
—
—
—
Spring 2025
Examines fiber bundles; induced bundles, principal bundles, classifying spaces, vector bundles, and characteristic classes, and introduces K-theory and Bott periodicity. Prerequisite: MATH 7800.
—
—
—
Fall 2025
Definition of homotopy groups, homotopy theory of CW complexes, Huriewich theorem and Whitehead's theorem, Eilenberg-Maclane spaces, fibration and cofibration sequences, Postnikov towers, and obstruction theory. Prerequisite: MATH 7800.
—
—
—
Fall 2025
Theory of distributions. Sobolev spaces and their properties (trace and embedding theorems). Theory of elliptic equations. Time-dependent partial differential equations: parabolic and hyperbolic equations. Topics in nonlinear partial differential equations. Prerequisites: MATH 7410 and 7250.
—
—
—
Spring 2025
Topics in the theory of operators on a Hilbert space and related areas of function theory.
—
—
—
Fall 2025
Topics in the theory of operators on a Hilbert space and related areas of function theory.
—
—
—
Spring 2025
This course presents the basic theory of stochastic differential equations and provides examples of its applications. It is an essential topic for students preparing to do research in probability. Topics covered include a review of the relevant stochastic process and martingale theory; stochastic calculus including Ito's formula; existence and uniqueness for stochastic differential equations, strong Markov property; and applications. Prerequisite: MATH 7360 and 7370, or instructor permission.
—
—
—
Spring 2026
Discusses fundamental problems and results of the theory of random matrices, and their connections to tools of algebra and combinatorics: Wigner's semicircle law, free probability, Gaussian, circular, and beta ensembles of random matrices, bulk and edge asymptotics and universality, Dyson's Brownian motion, determinantal point processes, and discrete analogues of random matrix models. Prerequisite: MATH 7360 or instructor permission.
—
—
—
Spring 2026
Theory of number fields and local fields, ramification theory, further topics as chosen by instructor.
—
—
—
Spring 2026
Selected advanced topics in algebraic topology.
No course sections viewed yet.