Your feedback has been sent to our team.
3.94
3.83
3.03
Fall 2025
Includes combinatorial principles, the binomial and multinomial theorems, partitions, discrete probability, algebraic structures, trees, graphs, symmetry groups, Polya's enumeration formula, linear recursions, generating functions and introduction to cryptography, time permitting. Prerequisite: MATH 1320 and a proof-based course (MATH 3000, MATH 3310 or MATH 3354) or instructor permission.
3.57
4.00
3.38
Spring 2026
Topics in probability selected from Random walks, Markov processes, Brownian motion, Poisson processes, branching processes, stationary time series, linear filtering and prediction, queuing processes, and renewal theory. Prerequisites: MATH 3100 and MATH 3351.
5.00
4.00
3.21
Spring 2026
This class introduces students to the mathematics used in pricing derivative securities. Topics include a review of the relevant probability theory of conditional expectation and martingales/the elements of financial markets and derivatives/pricing contingent claims in the binomial & the finite market model/(time permitting) the Black-Scholes model. Prerequisites: MATH 3100, MATH 3351 and a proof-based course (MATH 3000, MATH 3310 or MATH 3354).
3.50
4.33
3.03
Fall 2025
This course is a beginning course in partial differential equations/Fourier analysis/special functions (such as spherical harmonics and Bessel functions). The discussion of partial differential equations will include the Laplace and Poisson equations and the heat and wave equations. Prerequisites: MATH 3250 and either MATH 3351 or MATH 4210.
—
—
3.56
Spring 2026
A second course in ordinary differential equations, from the dynamical systems point of view. Topics include: existence and uniqueness theorems; linear systems; qualitative study of equilibria and attractors; bifurcation theory; introduction to chaotic systems. Further topics as chosen by the instructor. Applications drawn from physics, biology, and engineering. Prerequisites: MATH 3351 or APMA 3080 and MATH 3310 or MATH 4310.
2.33
3.00
3.68
Spring 2025
Includes Taylor's theorem, solution of nonlinear equations, interpolation and approximation by polynomials, numerical quadrature. May also cover numerical solutions of ordinary differential equations, Fourier series, or least-square approximation. Prerequisite: MATH 3250 and computer proficiency.
3.63
4.88
3.48
Fall 2025
This course covers the basic topology of metric spaces/continuity and differentiation of functions of a single variable/Riemann-Stieltjes integration/convergence of sequences and series. Prerequisite: MATH 3310 or permission of instructor.
3.33
5.00
3.49
Spring 2026
Differential and integral calculus in Euclidean spaces. Implicit and inverse function theorems, differential forms and Stokes' theorem. Prerequisites: multivariable calculus, basic real analysis, linear algebra and one of the following: MATH 4310, MATH 4651, MATH 4770, MATH 3315, or instructor permission.
—
—
—
Fall 2025
This course provides the opportunity to offer a new topic in the subject of mathematics.
4.10
4.14
3.43
Spring 2026
Review of topics from Math 3351: vector spaces, bases, dimension, matrices and linear transformations, diagonalization; however, the material is covered in greater depth and generality. The course continues with more advanced topics including Jordan canonical forms and introduction to bilinear forms. Prerequisites: a proof-based course and familiarity with computational aspects of elementary linear algebra. Math 3354 is strongly recommended
No course sections viewed yet.